MadaBoost: A Modification of AdaBoost

نویسندگان

  • Carlos Domingo
  • Osamu Watanabe
چکیده

We propse a new boosting algorithm that mends some of the problems that have been detected in the so far most successful boosting algorithm, AdaBoost due to Freund and Schapire [FS97]. These problems are: (1) AdaBoost cannot be used in the boosting by filtering framework, and (2) AdaBoost does not seem to be noise resistant. In order to solve them, we propose a new boosting algorithm MadaBoost by modifying the weighting system of AdaBoost. We prove that one version of MadaBoost is in fact a boosting algorithm, and we show how our algorithm can be used in detail. We then prove that our new boosting algorithm can be casted in the statistical query learning model [Kea93] and thus, it is robust to random classification noise [AL88].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on Mathematical and Computing Sciences : TR - C 138 title : MadaBoost : A modification of

In the last decade, one of the research topics that has received a great deal of attention from the machine learning and computational learning communities has been the so called boosting techniques. In this paper, we further explore this topic by proposing a new boosting algorithm that mends some of the problems that have been detected in the, so far most successful boosting algorithm, AdaBoos...

متن کامل

on Mathematical and Computing Sciences : TR - C 139 title : Experimental evaluation of an adaptive boosting by filtering algorithm

In this paper we present an empirical comparison of algorithm AdaBoost with its modification called MadaBoost suitable for the boosting by filtering framework. In the boosting by filtering one obtains an unweighted sample at each stage that is randomly drawn from the current modified distribution in contrast with the boosting by subsampling where one uses a weighted sample at each stage. A boos...

متن کامل

Algorithmic Aspects of Boosting

We discuss algorithmic aspects of boosting techniques, such as Majority Vote Boosting [Fre95], AdaBoost [FS97], and MadaBoost [DW00a]. Considering a situation where we are given a huge amount of examples and asked to find some rule for explaining these example data, we show some reasonable algorithmic approaches for dealing with such a huge dataset by boosting techniques. Through this example, ...

متن کامل

Technical Reports on Mathematical and Computing Sciences: TR-CXXX title: Algorithmic Aspects of Boosting

We discuss algorithmic aspects of boosting techniques, such as Majority Vote Boosting [Fre95], AdaBoost [FS97], and MadaBoost [DW00a]. Considering a situation where we are given a huge amount of examples and asked to find some rule for explaining these example data, we show some reasonable algorithmic approaches for dealing with such a huge dataset by boosting techniques. Through this example, ...

متن کامل

Supervised projection approach for boosting classifiers

In this paper we present a new approach for boosting methods for the construction of ensembles of classifiers. The approach is based on using the distribution given by the weighting scheme of boosting to construct a non-linear supervised projection of the original variables, instead of using the weights of the instances to train the next classifier. With this method we construct ensembles that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000